Calculations of oxygen transport by red blood cells and hemoglobin solutions in capillaries.

نویسندگان

  • Arjun Vadapalli
  • Daniel Goldman
  • Aleksander S Popel
چکیده

A theoretical model is developed to investigate the influence of hemoglobin-based oxygen carriers (HBOCs) on oxygen transport in capillary-size vessels. A discrete cell model is presented with red blood cells (RBCs) represented in their realistic parachute shape flowing in a single file through a capillary. The model includes the free and Hb-facilitated transport of O2 and Hb-O2 kinetics in the RBC and plasma, diffusion of free O2 in the suspending phase, capillary wall, interstitium and tissue. A constant tissue consumption rate is specified that drives the simultaneous release of O2 from RBC and plasma as the cells traverse the capillary. The model mainly focuses on low capillary hematocrits and studies the effect of free hemoglobin affinity, cooperativity and concentration. The results are expressed in the form of cell and capillary mass transfer coefficients, or inverse transport resistances, that relate the spatially averaged flux of O2 coming out of the RBC and capillary to a driving force for O2 diffusion. The results show that HBOCs at a concentration of 7 g/dl reduce the intracapillary transport resistance by as much as 60% when capillary hematocrit is 0.2. HBOCs with high O2 affinity unload most O2 at the venular end, while those with low affinity supply O2 at the arteriolar end. A higher cooperativity did not favor O2 delivery due to the large variation in the mass transfer coefficient values during O2 unloading. The mass transfer coefficients obtained will be used in simulations of O2 transport in complex capillary networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Study of Oxygen Transport in the Body of Living Organism (RESEARCH NOTE)

Oxygen is an essential part of the living organism. It is transported from blood to the body tissue by the systematic circulation and large part of it is stored in the blood flowing in capillaries. In this work we discuss a mathematical model for oxygen transport in tissues. The governing equations are established assuming that the blood is flowing along a co-axial cylindrical capillary inside ...

متن کامل

A Computational Study of Oxygen Transport in the Body of Living Organism

Oxygen is an essential part of the living organism. It is transported from blood to the body tissue by the systematic circulation and large part of it is stored in the blood flowing in capillaries. In this work we discuss a mathematical model for oxygen transport in tissues. The governing equations are established assuming that the blood is flowing along a co-axial cylindrical capillary inside ...

متن کامل

Effect of selected drugs used in asthma treatment on morphology and elastic properties of red blood cells

BACKGROUND The main function of red blood cells is to transport oxygen to all parts of the body with the help of hemoglobin. Other proteins of the cell membrane can attach xenobiotics (eg, drugs) from the blood and transport them throughout the body. Only drugs able to bind to the membrane of the red blood cell can modify its structure and elastic properties. The morphology and local elastic pr...

متن کامل

Comparative study of some blood respiratory factors between mudskipper, Scartelaos tenuis and mullet, Liza klunzingeri in the Persian Gulf, Hormozgan province

Fish depend on water to supply oxygen demand. Blood plays an important role in oxygen transport. Differences in oxygen uptake, resulting in special blood respiratory factors are arisen from diverse living styles. In this study, blood respiratory factors compared between mudskipper, Scartelaos tenuis, and Liza klunzingeri. Samples were taken from Bandar abbas shore line. Blood sampling was perfo...

متن کامل

Acellular hemoglobin solution enters compressed lung capillaries more readily than red blood cells.

High lung inflation pressures compress alveolar septal capillaries, impede red cell transit, and interfere with oxygenation. However, recently introduced acellular hemoglobin solutions may enter compressed lung capillaries more easily than red blood cells. To test this hypothesis, we perfused isolated rat lungs with fluorescently labeled diaspirin cross-linked hemoglobin (DCLHb; 10%) and/ or au...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Artificial cells, blood substitutes, and immobilization biotechnology

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2002